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1 Basic Concepts

A BM is a type of stochastic constraint satisfaction neural network based on statistical thermodynamics
(Ackley, Hinton, & Sejnowski, 1985). It is an extension of the Hopfield neural network model that
incorporates simulated annealing, and is composed of units connected using bidirectional symmetric links
(Hinton & Sejnowski, 1986). Units have a probabilistically determined binary state that is calculated
based on its neighbours’ states and the weights on the links to it. A connection weight can take any
positive or negative real value.

The units are divided into visible, v, and hidden, h. In the most general case, all the units are fully
connected, meaning every unit is connected to every other unit except itself; giving a total of N×N−N

2
weights, where N is the number of units. Visible units function as the interface between the BM and its
environment. Hidden units capture “underlying constraints in the ensemble of input vectors that cannot
be represented by pairwise constraints among the visible units” (Ackley et al., 1985, p. 154) and are
always free, i.e., unclamped. After training, a non-empty subset of the visible units may be clamped,
in which case the network’s weights will calculate the remaining free unit states, resulting in pattern
completion (Hinton & Sejnowski, 1986).

2 Interpretation of Network States

The activity of a BM unit can be interpreted as acceptance of a domain hypothesis, if it is on, or rejection,
if it is off. The weight of a link between two units represents a weak constraint on the two hypotheses; a
positive weight means the two hypotheses support each other (i.e., if one unit fires, it is likely the other
also will) and a negative weight indicates neither hypothesis should be accepted (Hinton, Sejnowski, &
Ackley, 1984).

When the visible units are clamped the BM seeks to locate a configuration of hypotheses that min-
imises the global energy. This energy, the extent to which the BM’s configuration violates the constraints
imposed by the environment (Hinton et al., 1984), is defined as:

E = −
∑
i<j

wijsisj +
∑
i

θisi (1)

where wij is the weight, or connection strength, between unit i and j, si is the state of unit i (on is 1
and off is 0), and θi, the threshold1, is a self-regulatory parameter applied to each unit (Ackley et al.,
1985).

Finding the global minimum in the energy landscape is not guaranteed. At best what can be done
is to perform a search for local energy minima, by switching every unit’s state to the one which lowers
most the total energy (Hinton & Sejnowski, 1986). Due to the network’s nature this energy gap, between
accepting the kth hypothesis and rejecting it, can be calculated locally, on per unit basis, using:

∆Ek =
∑
i

wkisi − θk (2)

where k is a unit that will fire if its input is above its threshold, θk (Ackley et al., 1985).

1Also known as a bias, bi, if it is inverted: bi = −θi.
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Figure 1: A BM with the connections of units 1—3 depicted only, with only two weights explicitly
labelled. The probabilities, pi, used to calculate the states of these three units are displayed, however
the two layers’ states should be further labelled as vi and hj .

3 Simulated Annealing, Thermal Equilibrium, and Learning

Local minima are by definition not optimal and thus, the BM must be able to avoid or escape from them.
This is accomplished by allowing units to fire probabilistically; amounting to introducing noise into the
network, permitting jumps between states of different energy (Hinton et al., 1984). The probability that
a unit k will fire is set to:

pk =
1

1 + e−∆Ek/T
(3)

where ∆Ek is k’s energy gap (see Equation 2), and T is the temperature (Ackley et al., 1985). As T
approaches 0, thermal equilibrium, the relative probability of two global states2 follows the Boltzmann
distribution. Due to the inherent properties of this distribution, in order to reach equilibrium a process
called simulated annealing must be applied to the network3.

The equation used to update the value of each weight, the learning rule4 is:

∆wij = ε(pij − p′ij) (4)

where ε, the learning rate, moderates the effect the difference between the two probabilities has on wij

(Ackley et al., 1985), pij is the probability of units i and j both being on when all the visible units are
clamped, the plus phase, and p′ij is the probability of the units co-occurring when the BM is running
freely at thermal equilibrium, the minus phase (Hinton et al., 1984).

The learning rule, as mentioned, uses only locally available information to optimise a global energy
measure (Hinton et al., 1984). It has the ability to make the spontaneous behaviour of the network in the
minus phase mimic that of the plus phase, by only observing how often units i and j are on at thermal
equilibrium (Hinton & Sejnowski, 1986).

2A global state is a set of all unit states; there are 2v+h possible global states.
3For a detailed account of the reasons behind this, see Hinton and Sejnowski (1986).
4For the mathematical derivation of the BM learning algorithm see the appendix in Hinton and Sejnowski (1986) or in

Ackley et al. (1985).
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