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Rogers et al. (2004) present a model of semantic cognition – the “hub”
model – that reproduces the behaviour of neurologically healthy and
neurologically impaired individuals on a range of tests of semantic
knowledge. The model and associated theory provide a comprehen-
sive explanation for deficits, such as semantic dementia, by appeal-
ing to the breakdown of attractors within a recurrently connected
system following damage. We report findings from an attempted
replication of the Rogers et al. model. While normal behaviour was
reproduced, lesioning the reimplementation did not fully replicate
the behaviour of the original model, meaning that the reimplementa-
tions contain healthy semantic representations which are in line with
the hub theory, but the effects of damage on the structure of the se-
mantic representations are not theoretically accounted for. The hub
theory predicts that after damage semantic representations must de-
cay in certain ways in order to give rise to patient behaviour. Our
results show that the reimplementations do not fully exhibit these
symptoms. This suggests that while semantic impairments reminis-
cent of patients may arise following lesioning of the hub model, such
patterns are not a necessary consequence of the model as initially
described. We discuss the implication of this apparently negative re-
sult for the hub theory of semantic cognition, focusing on differences
between our reimplementation and the implementation of Rogers et
al., and on the theory-model relationship more generally.

1. Introduction

Semantic cognition comprises a set of cognitive processes that give percepts
meaning, allowing for the formation of relations over both concepts and
percepts. Various semantic tasks have been developed that test a subjects’
ability to access and use semantic concepts, given percepts. These tasks
are designed to be administered to both neurologically healthy individuals
and patients with semantic deficits (e.g., semantic dementia, herpes simplex
virus encephalitis, semantic aphasia, etc.) to determine the exact nature
of patient deficits. Patient and healthy participant data may further be
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Figure 1: An overview of the semantic hub and its modal spokes, based on
figure 2 in Lambon Ralph et al. (2007).

used to inform and benchmark cognitive modelling efforts, which aim to
account for the ability to perform semantic cognition tasks and predict the
breakdown of semantic memory.

One influential account of semantic cognition is the “hub” theory of
Rogers et al. (2004). According to this theory, modality-specific percep-
tual inputs (e.g., visual, aural, motor, somatosensory, etc.) are reciprocally
connected to a central amodal hub, as shown in figure 1. The information
passed between the hub and its spokes allows for retrieval of semantic asso-
ciations (e.g., visualising a dog based on hearing a bark), identification (e.g.,
calling a picture of a dog “dog”), categorisation (e.g., classifying a poodle as
a “dog”, “mammal” and “animal”), and generation (e.g., describing, draw-
ing, or imitating a “dog”). Damage to the connectivity within the amodal
semantic hub, and between the hub and the modal spokes, is proposed to
give rise to the deficits seen in patients. The model thus aims to provide
an explanation for both normal and impaired semantic cognition.

Rogers et al. (2004) present a connectionist implementation of the hub
theory. Their model, shown in figure 2, consists of a subset of the possi-
ble modalities, allowing for visual, verbal and name input/output, and is
specifically designed to account for the effects of neurodegeneration as seen
in semantic dementia (SD) patients. When undamaged, the Rogers et al.
model performs at ceiling on four tests of semantic cognition, as do neuro-
logically healthy participants. However, after removing a random subset of
all connections (by setting the corresponding weights to zero), the model
shows the same qualitative patterns as SD patients. Thus, the model is



held to capture the complexity of semantic cognition required to explain
both normals and SD patients.

The mechanism that underpins concepts – both in the hub theory and
in the connectionist implementation – is the emergence of attractor states.
Such states arise in dynamical systems that have recurrently connected
components. Given partial input the system state gravitates towards the
centre of a basin of attraction, thus recreating the full multi-modal experi-
ence of the concept. The hub theory proposes that, as a result of lesioning
connections, neighbouring attractor basins coalesce, creating larger more
generalised concepts. Attractors that are proximal in semantic space merge
to represent a more general concept, as reflected in SD patients’ responses
on semantic tasks.

Based on three reimplementations, we explore the claim that the hub
theory as described by Rogers et al. (2004) is sufficient to yield models
with the required attractor dynamics. In the following sections, the effect
of implementation differences on model performance on semantic tasks is
discussed with the aim of illuminating the relationship between the hub
theory and its implementation. We conclude by considering the general
relationship between models and theories.

2. Three implementations of the hub theory

2.1. General architecture

The hub model, as presented in Rogers et al. (2004), is a real-valued re-
current neural network consisting of three pools of input/output units: 40
name units, 64 visual units, and 111 verbal units (further subdivided into
61 perceptual, 32 functional, and 18 encyclopaedic units). Name units
represent natural language labels (e.g., “car”), visual units code for visual
perceptual features (e.g., “is blue”), and verbal units assume the role of
general verbal properties that are perceptual (e.g., “makes noise”), func-
tional (e.g., “can cut”), and encyclopaedic (e.g., “is living”). These units
are bidirectionally connected to 64 fully recurrent hidden units, as shown
in figure 2. The input/output pools represent the sensory spokes, and the
hidden units represent the amodal semantic hub. Activation spreads from
one or more spokes to the hub and from the hub back to every input/output
pool, thus functioning as a pattern-completing auto-associator.

2.2. Pattern set

Rogers et al. (2004) provide a probabilistic template for generating ap-
propriate training sets. We use this template (cf. fig. 3, Rogers et al.)
to create a pattern set, equivalent in structure to the original Rogers et
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Figure 2: The hub model’s neural network topology, based on figures 1 and
3 in Rogers et al. (2004).

al. (as evidenced by hierarchical cluster dendrograms), for training and
testing our reimplementations. According to the template, mutually ex-
clusive subsets of visual and verbal features underpin the main distinction
between man-made and inanimate objects, as shown in figure 3. Other
structural properties are: that the two domains are subdivided into 6 cat-
egories (mammals, birds, fruit, vehicles, household objects and tools); that
verbal sub-patterns include a single feature present to denote category and
domain membership; and that names consist of a single uniquely activated
unit, thus creating 40 orthogonal name bit vectors. Some names are shared
between certain visual/verbal sub-patterns in order to create category-level
names, thus giving rise to archetypal patterns (e.g., labelling an animal
“dog” as opposed its breed name).

The elements of the training set are binary vectors each with 215 bits.
Each vector has the following bits set: a) the individual visual or verbal
features it possesses (e.g., “is red”, “has legs”); b) the localist orthogonal
bit vector that constitutes the name sub-pattern (e.g., “robin”); and c)
the localist category and domain membership units within the verbal sub-
pattern (e.g., “is mammal”, “is tool”; in figure 3 these are represented
by the last 7 units). Based on this structure, we created a pattern set
consisting of 48 items that abides by the above constraints. In other words,
each pattern consists of a name, which contains no intrinsic information,
followed by a set of visual and verbal properties, which contain shared and
distinctive features that enable the network models to infer a similarity
structure.

2.3. Training algorithms

We report three implementations of the hub theory using the architecture
and pattern set described above.
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Figure 3: Two examples of simplified patterns. Solid rectangles represent
activated features in the visual and verbal sub-patterns (e.g., “has fur”),
while empty ones represent features that are not present.

2.3.1. BPTT1

The first network was trained using epochwise back propagation through
time (BPTT: Williams & Zipser, 1989, 1995), following the procedure of
Rogers et al. (2004) where specified. BPTT is a variant of back propagation
that involves “unrolling” a multi-layered feedforward version of the recur-
rent network and training the weights using standard back propagation
within this new unrolled network. When the learning phase is completed
the network is reverted back to its normal recurrent state. Following Rogers
et al., the network was settled for 28 steps during training. As in Rogers et
al., the input units were clamped (i.e., forced to take on their target values)
for twelve of these steps. We refer to this method of training as BPTT1.

2.3.2. BPTT2

An alternative method, which we refer to as BPTT2, is to clamp the targets
to the outputs for the full 28 settling steps – every other aspect of this
training procedure is identical to BPTT1. This reduces the noise in the
error signal during training resulting in an order of magnitude fewer epochs
to learn the training set.

2.3.3. BM

A radically different way of implementing the model is to use a Boltz-
mann machine (BM). BMs are a type of binary-valued recurrent stochastic
neural network. This kind of network is able to conform to the topology re-
quired by the hub theory and permits the emergence of attractors (Hinton
& Sejnowski, 1986). Training involves minimising the difference in unit
activations between the network settled with all inputs clamped, known
as the plus state, and the network settled on each sub-pattern (e.g., just
the verbal features clamped), called the minus states (Ackley, Hinton, &
Sejnowski, 1985).
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Figure 4: Dendrogram for BPTT1 internal semantic states sampled 100
times per name sub-pattern input. Category names, shared over three
patterns, are capitalised.

3. Simulation results

3.1. Normal behaviour

Semantic cognition can be assessed using: a) confrontation naming, which
involves giving an appropriate linguistic label to a line-drawing; b) word-to-
picture matching, pairing a card with a word on it to one with a drawing of
the same animal or artefact; c) sorting words and pictures, categorising the
aforementioned word and picture cards into two piles for each domain (ani-
mate/inanimate objects) and into six categories (mammals, birds, fruit, ve-
hicles, household objects, and tools); and d) drawing, copying, and delayed
copying, which requires sketching from memory and copying line-drawings
either directly or after a time delay.

Once trained, healthy naming and sorting are possible in all models
except the BM. This is due to the inherent stochastic nature of BMs, the
need for extra training to better learn the mapping between visual input
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Figure 5: Dendrogram for BPTT1 internal semantic states after 30% con-
nection weights lesioned sampled 100 times per name sub-pattern input.

and name output, and the design of the two tasks. The naming and sorting
tasks make use of localist interpretations for names and category member-
ship, which are not part of the BM’s learning strategy. This issue can be
addressed given greater training, although with the training given in this
study the BM does score at ceiling on the word-to-picture matching and
the drawing, copying, and delayed copying tasks, which use distributed
representations.

As required by the hub theory, all the networks have internal states that
allow for the mapping of the perceptual inputs to the output modalities,
thus completing each of the four semantic tasks. Fundamentally, the inter-
nal semantic space must mirror the categorical and domain structure of the
training set. This attractor-space can be represented using a dendrogram
as in figure 4, which shows the Euclidean distance between both individual
concepts and between categories and domains. This allows a comparison
between the intended categories and those that arise from the structure of
the learned attractor states (cf. figure 5, Rogers et al., 2004).



Rogers et al. (2004) provide a list of qualitative properties that their
model’s internal representations possess. As shown in figure 4, our versions
also conform to this list. Firstly, the two domains, animals and artefacts, are
clearly separated from each other, as are to a lesser extent the six categories.
Secondly, the model’s representation of category-level names (e.g., “BIRD
1”) are classed within their category cluster. And finally, fruit are classed
under the domain of inanimate objects, but are in a distinct cluster to the
the rest of the artefacts.

3.2. Damaged behaviour

Since our reimplementations have healthy internal representations as found
in the original hub model, damage can be applied to cause disruptions to
the attractor basins. SD-like damage is modelled by setting increasing pro-
portions of all connection weights to zero. This causes the network to be
less adept at completing semantic tasks, as propagation of activations both
within the hub and between it and its spokes is impaired. Disconnection
has a pronounced effect on the semantic attractor landscape; the network
can now only manage to represent a subset of the previous 48 concepts,
which can be seen in figure 5. The clusters corresponding to concepts, cat-
egories, and domains are now deformed, e.g., the attractors for “cup” and
“mouse”, from opposing domains, are now in the same semantic cluster.
This merging of conceptual representations from different domains, as op-
posed to categories within the same domain of knowledge, appears to signal
a deviation from the hub theory’s requirements.

In the next few sections, we focus on behaviour in the naming and
sorting task, as these two tasks are the most problematic in terms of ac-
counting for the patient data in the reimplementations1. These two tasks
results depend heavily on the network settling to the correct internal state
after lesioning damage.

3.2.1. Confrontation naming

The confrontation naming test involves producing an appropriate word
when given a visual depiction of an object. For the group of patients this
involves a line-drawing and an experimenter to record their response. For
the models, following the original task design, naming involves clamping the
visual units (representing the input to semantics when looking at a picture)
and then allowing the network to cycle for twelve settling steps (cf. Rogers
et al., 2004, p. 217). After that the visual units are unclamped and the

1Rogers et al. (2004) also consider behaviour of the hub model on word-to-picture
matching and in the drawing, copying and, delayed copying task. Our reimplementations
replicate these results.



network is allowed to settle until equilibrium. When the network reaches a
stable end-state the name output is inspected and whichever name unit is
found to be most active, above a threshold of 0.5, is taken to be the model’s
response. If no unit has an activation above the threshold, the response is
classified as an omission. This method is not applicable to the binary unit
states of the BM. Hence, for the BM, the response is derived by finding the
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Figure 6: Results of the naming task for each model. Each data point
represents the proportion of error for each type of error at a percentage of
connections lesioned: from 0% to 90% in increments of 10% sampled 500
times; in the case of the Rogers et al. results are at 10%, 20%, 25%, and
35% connections lesioned taken from fig. 6, Rogers et al. (2004).



pattern closest in Euclidean space to the name output. If more than one
name unit is activated the confidence of the BM is taken to be the recip-
rocal of the number of active name units; any reciprocal under 0.5 is an
omission.

There are four important qualitative features of the naming scores found
in both the longitudinally tested SD patients (cf. figure 6, Rogers et al.,
2004) and in the original model (reproduced in the top left sub-graph of
figure 6). Firstly, the overwhelming proportion of errors consists of omis-
sions, meaning the patient is anomic or the model is unable to activate
any name units above the threshold. Omission errors are seen to increase
with the progress of neurodegeneration. Secondly, semantic errors, which
involve confusing an item with another from the same semantic category
(e.g., calling a mouse “dog”), initially start off low, then grow to about
a quarter of responses, and finally return to a lower proportion. Thirdly,
superordinate errors, giving a category name to an item that would not be
labelled as such by a healthy participant (e.g., calling a dog “mammal”),
show the same pattern as semantic errors. Although at all levels of lesioning
superordinate errors are lower than semantic errors, reaching only about a
tenth of all responses at their highest proportion. Fourthly, crossdomain
errors, giving an item a name from the opposing semantic domain (e.g.,
calling a hammer “dog”) are extremely rare in both the fifteen Rogers et
al. patients and in the original model.

The BPTT1, BPTT2, and BM naming graphs in figure 6 show only a
partial replication of the naming task scores as discussed above. Firstly,
omissions are lower than semantic errors, but in fact they should be consis-
tently above all other errors. Secondly, semantic errors are proportionally
the highest error type. Thirdly, superordinate errors are qualitatively a
good fit. Fourthly, crossdomain errors occur, when instead they should be
at floor levels. This pattern of responses persists even if the value of the
threshold, which determines the proportion of responses that are classified
as omissions, is varied.

The results of the confrontation naming task run on the three differ-
ent implementations show that internal representations do not decay in a
way that replicates the patients’ scores. So while healthy naming is pos-
sible, at least within the BPTT reimplementations, the predictions made
by Rogers et al. (2004) are not met. Specifically, they claim that “[w]ith
increasing damage, the model becomes unable to generate any information
that individuates items from the same broad domain, and representations
within a given domain collapse into a single general attractor from which
the model produces only those properties common to the majority of items
in the domain. [That is to say, t]he model never names an object with
a completely unrelated label, because such names apply only to objects



with very distal internal representations” (Rogers et al., p. 218). However,
we can see from both the damaged semantic representations BPTT1 has,
shown in figure 5, and from the naming scores in figure 6, that concepts
from opposing domains can become much closer to each other than (what
should be) neighbouring concepts. This is why a larger proportion of cross-
domain errors are produced: attractor dynamics do not necessarily follow
the predictions set out by the hub theory.

3.2.2. Sorting words and pictures

The sorting task is used to determine the preservation of hierarchical con-
ceptual knowledge in patients. It is carried out by classifying words and
pictures into the five categories (Rogers et al., 2004, exclude fruit during
testing) and into the two domains, respectively named specific sorting and
general sorting. This semantic task is modelled in the same way as the
naming task with regards to settling, by clamping the target for twelve
settling steps, then removing the target and allowing the model to reach
equilibrium (Rogers et al. use this method for all the tasks). Once the
network is in a stable state, the verbal units which represent category or
domain membership are examined (cf. Rogers et al., p. 220). For general
sorting, the domain unit for animals or for artefacts is used to determine
the response of the network, and for specific-level sorting category units
are inspected. Whichever unit is most active is taken to be the model’s
response.

Figure 7 shows the the original model behaviour in the top left corner.
This reflects the pattern of the twelve patients tested by Rogers et al.
(2004), in particular: a) the sorting of pictures is more preserved than that
of words; b) sorting at a general level is retained more so than specific
sorting; and c) the ability to classify pictures into their respective domains
is largely unaffected by lesioning.

The BPTT1 results, shown in the top left sub-graph of 7, indicate that
the last of these properties is absent; scores in general picture sorting should
be near or at ceiling even after substantial (40%) lesioning. The graphs for
the BPTT2 and BM models do not display this property either, but nor
do they consistently show the other two qualitative effects. In contrast to
the original model, the scores of the three reimplementations for all types
and levels of sorting tend towards baseline values (chance for category-level
sorting is 0.2 and for domain-level is 0.5 – any slight deviation from these is
due to the values of the bias units). Rogers et al. (2004) propose that their
model of the sorting task is able to follow the patients’ scores because “the
effect of damage must be quite severe before the system begins to generate
incorrect verbal information about such properties” (Rogers et al., p. 220).



The BPTT1 reimplementation manages to show a partial replication,
however the BPTT2 and BM do not reflect any aspect of the patient scores
consistently. So while in the original model the “difference in the nature of
the mapping between surface form and conceptual representations [...] un-
derpins the difference in performance for word and picture sorting” (Rogers
et al., 2004, p. 221), this does not hold as strongly for the BPTT2 and BM.

Rogers et al. model BPTT1
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Figure 7: Results of the sorting task on words and on pictures at a general
and specific level of categorisation. Each data point represents the score
at the level of lesioning sampled 500 times. Error bars – where present –
indicate one standard error about the mean. NB: difference in x-axis scale
between the Rogers et al. (2004) model and the three reimplementations.



In addition, in the original hub model “[a]rbitrary mappings are more vul-
nerable to damage than are systematic mappings” (ibid, p. 221), meaning
that word sorting is more fragile than picture sorting; however, this also
does not generalise to all our reimplementations.

It should be noted that qualitatively equivalent naming and sorting
scores as those seen in the reimplementations in figures 6 and 7 are found
over many instances of BPTT1, BPTT2, and BM networks (i.e., the results
are not an artifact of one set of trained weights). In addition, the train-
ing algorithm of the BPTT networks has been varied between epoch-wise,
pattern-wise and sub-pattern-wise (weights updated after each name, ver-
bal, visual sub-pattern) and it has been found to also produce qualitatively
equivalent naming and sorting graphs.

4. Discussion

McClelland argues that:

When a model fails to capture some aspect of human perfor-
mance, it represents both a challenge and an opportunity. The
challenge is to determine just what aspect or aspects of the
model are to blame for the failure. Because the model is an
exploration of a set of ideas, it is not clear which members of
the set are at fault for the models shortcomings. Model failures
also present an opportunity: When a model fails it allows us to
focus attention on where we might have been wrong, allowing
real progress to arise from further investigations.

McClelland (2009, p. 21)

The work presented here demonstrates that the implications of the ideas
embodied in the hub theory do not necessarily capture some aspect of hu-
man performance. In other words, because reimplementations do not show
the same pattern of errors, as a consequence of not showing an equivalent
decay of attractor basins, our results represent both a challenge and an
opportunity for further research. The original hub model and the reim-
plementations we present here constitute an exploration of a set of ideas,
some of these ideas might lead to conclusions or give rise to phenomena that
might not have been uncovered a priori. By running different models based
on a theory, as McClelland claims, the repercussions of the ideas explicitly
and implicitly contained in the theory can be illuminated and explored.

Within the hub theory, attractors break down in ways that are pre-
dictable and this breakdown is the phenomenon proposed to account for
the semantic impairments documented in patients. However this does not



appear to hold for all implementations of the hub theory. Specifically, while
our three reimplementations are adept at patient modelling on the word-
to-picture and drawing and delayed copying tasks, they do not fare well
when reproducing patient scores in the naming and sorting tasks; nor do
our models exhibit the required pattern of breakdown in their internal rep-
resentations. This means that the ideas encapsulated within the hub theory
can lead to models that are not fully in line with the higher level aims of
the theory, i.e., to explain the effects of the neurodegeneration caused by
semantic dementia on the semantic cognitive system.

In the original hub model, Rogers et al. (2004) describe the breakdown
in performance of the hub model following damage as arising because “small
amounts of drift may lead the network into an inappropriate proximal at-
tractor, [thus making the model] produce incorrect responses appropriate to
a semantically related object[, meaning that the attractor space is] robust
even to relatively large amounts of damage, because the system’s internal
representations must be severely distorted before they drift out of the re-
gion to which such properties apply” (Rogers et al., p. 229). This has been
shown not to hold for our reimplementations, as errors have been docu-
mented that are not semantic relations of the target response, instead they
are from the opposing domain of knowledge. This is not documented in the
original model, or the patients. In the reimplementations presented here it
occurs even given relatively small amounts of lesioning damage.

Why might our reimplementations, when damaged, fail to reproduce
the behaviour reported by Rogers et al. (2004)? One possibility is that
the pattern of breakdown of attractors as required by the hub theory is
not a necessary consequence of a recurrent neural network trained with
the structure of the training set. The hub theory assumes that attractors
drift apart and merge in certain ways, as a consequence of the underlying
recurrent neural network substrate, without requiring this at a theoretical
level. But this assumption does not always hold. Based on this disparity
between models and theory, it appears that the hub theory is underspecified
as different implementations behave differently. Therefore, some additional
theoretical constraint is required if models that implement the hub theory
are to be consistent with the patients’ behaviour. In our view this constraint
should concern the behaviour of attractors following lesioning.
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